Research 研究 Theoretical and Foundational Research 理论及基础研究

转载自:https://www.cmu.edu/dietrich/philosophy/tetrad/research/index.html

1982 – 1989

Books书籍

Discovering Causal Structure: Artificial Intelligence, Philosophy of Science, and Statistical Modeling (1987), C. Glymour, R. Scheines, P. Spirtes, and K. Kelly. Academic Press, San Diego, CA.

发现因果关系结构:人工智能、科学哲学和统计建模(1987),C. Glymour,R. Scheines,P. Spirtes 和 K. Kelly。学术出版社,圣地亚哥,加利福尼亚州。

Articles文章

Glymour, C., and R. Scheines, (1986). “Causal Modeling with the TETRAD Program,” Synthese, Vol. 68, No. 1, July, pp. 37-64.

Glymour, C.,和 R. Scheines,(1986)。《使用 TETRAD 程序进行因果建模》,Synthese,第 68 卷,第 1 期,7 月,第 37-64 页。

1990 – 1994

Books书籍

Causation, Prediction, and Search (1993), P. Spirtes, C. Glymour, and R. Scheines, vol. 81 in Springer-Verlag’s Lecture Notes in Statistics Series.

因果、预测和搜索(1993),P. Spirtes,C. Glymour 和 R. Scheines,Springer-Verlag 统计学讲义系列第 81 卷。

TETRAD II: Tools for Causal Discovery (1994), R. Scheines, P. Spirtes, C. Glymour, and C. Meek, Lawrence Erlbaum Associates, Hillsdale, N.J.

TETRAD II:因果发现工具(1994),R. Scheines,P. Spirtes,C. Glymour,和 C. Meek,劳伦斯·埃尔鲍姆出版社,希尔兹代尔,N.J.

Articles文章

Glymour, C., R. Scheines, and P. Spirtes, (1988). Exploring Causal Structure with the TETRAD Program,” Sociological Methodology, Clifford Clogg (editor), American Sociological Association, Vol. 18, pp. 411-448.

Glymour, C., R. Scheines, 和 P. Spirtes, (1988) 使用 TETRAD 程序探索因果关系结构,《社会学方法论》,Clifford Clogg(编辑),美国社会学协会,第 18 卷,第 411-448 页。

Spirtes, P., R. Scheines, and C. Glymour, (1990). Simulation Studies of the Reliability of Computer Aided Model Specification using the TETRAD, EQS, and LISREL Programs,” Sociological Methods and Research, Vol. 19, No. 1, pp. 3-66.

Spirtes, P.,R. Scheines,和 C. Glymour,(1990)。使用 TETRAD、EQS 和 LISREL 程序对计算机辅助模型规范的可靠性进行模拟研究,”社会学方法与研究,第 19 卷,第 1 期,第 3-66 页。

Glymour, C., Spirtes, P. and Scheines, R. (1990). Independence Relations Produced by Parameter Values in Causal Models,” Philosophical Topics, Vol. 18, No. 2, pp. 55-70

Glymour, C.,Spirtes, P. 和 Scheines, R. (1990)。“因果模型中参数值产生的独立性关系”,哲学主题,第 18 卷,第 2 期,第 55-70 页

Spirtes, P., C. Glymour, and R. Scheines, (1991). “From Probability to Causality,” in Philosophical Studies, Vol. 64. No 1. pp. 1-36

Spirtes, P.,C. Glymour,和 R. Scheines,(1991)。《从概率到因果关系》,载《哲学研究》,第 64 卷,第 1 期,第 1-36 页。

Glymour, C., P. Spirtes, and R. Scheines, (1991). “Causal Inference,” in Erkenntnis, Kluwer Academic Publishers, Vol. 35, Nos. 1-3., July, pp. 151-189

Glymour, C.,P. Spirtes,和 R. Scheines,(1991)。《因果推断》,载于《认识》,克卢沃学术出版社,第 35 卷,第 1-3 期,7 月,第 151-189 页。

Spirtes, P. and C. Glymour (1991). An Algorithm for Fast Recovery of Sparse Causal Graphs. Social Science Computer Review, Vol. 9, pp. 62-72.

Spirtes, P. 和 C. Glymour (1991). 快速恢复稀疏因果图的算法。社会科学计算机评论,第 9 卷,第 62-72 页。

Scheines, R. and P. Spirtes, (1992) Finding Latent Variable Models in Large Data Bases,” in the International Journal of Intelligent Systems, edited by G. Piatetski-Shapiro, Vol. 7, No. 7, September, pp. 609-622.

Scheines, R. 和 P. Spirtes, (1992) 在《国际智能系统杂志》中,由 G. Piatetski-Shapiro 编著,第 7 卷,第 7 期,1992 年 9 月,第 609-622 页,寻找大型数据库中的潜在变量模型

Glymour, C., P. Spirtes, and R. Scheines (1993). Inferring Causal Structure in Mixed Populations, in Artificial Intelligence Frontiers in Statistics: AI and Statistics III, D.J. Hand (editor), Chapman & Hall, London, pp. 141-155.

Glymour, C.,P. Spirtes 和 R. Scheines(1993)。在混合人群中进行因果结构推断,载于《人工智能:统计学前沿——人工智能与统计学 III》,D.J. Hand(编者),Chapman & Hall,伦敦,第 141-155 页。

C. Meek and R. Scheines, (1993). Causal Structure, Neural Networks, and Classification, in Conference Proceedings: Applications of Artificial Neural Networks and Related Technologies to Manpower, Personnel and Training, NPRDC-AP-93-10, Navy Personnel Research and Development Center, San Diego, CA, pp. 115-124.

C. Meek 和 R. Scheines, (1993). 因果结构、神经网络与分类,在会议论文集:人工神经网络及相关技术应用于人力、人员和培训,NPRDC-AP-93-10,圣地亚哥海军人员研究与开发中心,加利福尼亚州,第 115-124 页。

Glymour, C., P. Spirtes, and R. Scheines, (1994). In Place of Regression, in Patrick Suppes: Scientific Philosopher, Paul Humphreys (editor), Vol. 1, Kluwer Academic Publishers, Dordrecht, Holland.

Glymour, C.,P. Spirtes,和 R. Scheines,(1994)。在《回归的替代品》中,收录于《帕特里克·苏佩斯:科学哲学家》,保罗·汉弗莱斯(编辑),第 1 卷,克卢沃学术出版社,多德雷赫特,荷兰。

1995 – 1999

Articles文章

Scheines, R. (1996). Estimating Latent Causal Influences,” in Proceedings of the 6th International Workshop on Artificial Intelligence and Statistics, eds. P. Smythe and D. Madigan.

Scheines, R. (1996). 估计潜在因果影响,”见《第 6 届国际人工智能与统计学研讨会论文集》,编者 P. Smythe 和 D. Madigan。

Scheines, R. (1997). An Introduction to Causal Inference, in Causality in Crisis?, V. McKim and S. Turner (eds.), Univ. of Notre Dame Press, pp. 185-200.

Scheines, R. (1997). 因果推断导论,载于《危机中的因果律?》,V. McKim 和 S. Turner 编,圣母大学出版社,第 185-200 页。

Scheines, R., Spirtes, P., Glymour, C., Richardson, T., & Meek, C. (1998). “The TETRAD Project : Constraint Based Aids to Model Specification.” Multivariate Behavioral Research, Vol. 33, N. 1, 65-118, & “Reply to Commentary,” same issue, 165-180.

Scheines, R.,Spirtes, P.,Glymour, C.,Richardson, T.,& Meek, C. (1998)。“TETRAD 项目:基于约束的模型规范辅助。”多变量行为研究,第 33 卷,第 1 期,第 65-118 页,“对评论的回复”,同一期,第 165-180 页。

Spirtes, P., Richardson, T., Meek, C., Scheines, R., and Glymour, C., (1998). “Using Path Diagrams as a Structural Equation Modeling Tool,” Sociological Methods & Research, Vol. 27, N. 2, 182-225.

Spirtes, P.,Richardson, T.,Meek, C.,Scheines, R.,和 Glymour, C.,(1998)。《使用路径图作为结构方程模型工具》,社会学方法与研究,第 27 卷,第 2 期,第 182-225 页。

Spirtes, P., Glymour, C., Scheines, R., Meek, C., Feinberg, S., and Slate, E. (1999). Prediction and Experimental Design with Graphical Causal Models, in Computation and Causation, edited by C. Glymour and G. Cooper, MIT Press, Cambridge, MA, pp. 65-94.

Spirtes, P.,Glymour, C.,Scheines, R.,Meek, C.,Feinberg, S.,和 Slate, E. (1999)。利用图形因果模型进行预测和实验设计,收录于 C. Glymour 和 G. Cooper 编辑的《计算与因果》,麻省理工学院出版社,剑桥,马萨诸塞州,第 65-94 页。

Scheines, R., Hoijtink, H., & Boomsma, A. (1999), Bayesian Estimation and Testing of Structural Equation Models, Psychometrika. 64, 1, pp. 37-52.

Scheines, R.,Hoijtink, H.,& Boomsma, A. (1999),贝叶斯估计和结构方程模型的检验,心理测量学。64,1,第 37-52 页。

2000 – 2004

Books书籍

Causation, Prediction, and Search (2000), 2nd edition, P. Spirtes, C. Glymour, and R. Scheines, MIT Press, Boston.

因果、预测与搜索(2000),第 2 版,P. Spirtes,C. Glymour,和 R. Scheines,麻省理工学院出版社,波士顿。

Articles文章

Spirtes, P., Glymour, C., Scheines, R., Kauffman, S., Aimalie, and Wimberly, F. (2001). Constructing Bayesian Network Models of Gene Expression Networks from Microarray Data,” in Proceedings of the Atlantic Symposium on Computational Biology, Genome Information Systems and Technology, Duke University, March. 

Spirtes, P.,Glymour, C.,Scheines, R.,Kauffman, S.,Aimalie 和 Wimberly, F.(2001)。从微阵列数据构建贝叶斯网络模型基因表达网络,《大西洋计算生物学、基因组信息系统和技术研讨会论文集》,杜克大学,三月。

Chu, T., Scheines, R., and Spirtes, P. (2001). “Semi-Instrumental Variables: A Test for Instrument Admissibility, in Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, Univ. of Washington, Seattle, 20.

Chu, T.,Scheines, R.,和 Spirtes, P.(2001)。《半工具变量:工具可接受性检验,载于第 17 届人工智能不确定性会议论文集,华盛顿大学,西雅图,20。》

Scheines, R., (2002), Estimating Latent Causal Influences: TETRAD III Variables Selection and Bayesian Parameter Estimation: Lead and IQ” Handbook of Data Mining and Knowledge Discovery, Pat Hayes, editor, Oxford University Press, 944-952.

Scheines, R., (2002),估计潜在因果影响:TETRAD III 变量选择和贝叶斯参数估计:领先和智商”数据挖掘与知识发现手册,Pat Hayes 编著,牛津大学出版社,944-952。

Chu, T., Glymour, C., Scheines, R., and Spirtes, P (2003). “A Statistical Problem for Inference to Regulatory Structure from Associations of Gene Expression Measurements with Microarrays,” Bioinformatics, 19: 1147-1152

Chu, T.,Glymour, C.,Scheines, R.,和 Spirtes, P (2003)。“从基因表达测量与微阵列关联中推断调节结构的统计问题,”生物信息学,19:1147-1152

Feinberg, S., C. Glymour, and R. Scheines (2003). Expert Statistical Testimony and Epidemiological Evidence: The Toxic Effects of Lead Exposure on Children, Journal of Econometrics, Volume 113, Issue 1, March, 33-48.

费因伯格,S.,C. 格利莫尔,和 R. 舍因斯(2003)。专家统计证据与流行病学证据:铅暴露对儿童的有毒影响,计量经济学杂志,第 113 卷,第 1 期,3 月,33-48。

Spirtes, P., and Scheines, R. (2004). Causal Inference of Ambiguous Manipulations, Philosophy of Science 71 (5):833-845 (2004).

Spirtes, P.,和 Scheines, R. (2004)。模糊操纵的因果推断,科学哲学 71 (5):833-845 (2004)。

2001 – 2005

Articles文章

Robins, J., Scheines, R., Spirtes, P., and Wasserman, L. (2003). Uniform Consistency in Causal Inference, Biometrika, September, 90: 491 – 515.

罗宾斯,J.,谢因斯,R.,斯皮里特斯,P.,和水色曼,L. (2003). 因果推断中的统一一致性,生物计量学,九月,90: 491 – 515。

Spirtes, P., Scheines, R., Glymour, C., Richardson, T., and Meek, C. (2004), “Causal Inference,” in Handbook of Quantitative Methodology in the Social Sciences, ed. David Kaplan, Sage Publications, 447-478.

Spirtes, P.,Scheines, R.,Glymour, C.,Richardson, T.,和 Meek, C. (2004),“因果推理”,载《社会科学定量方法论手册》,David Kaplan 编,Sage Publications 出版,第 447-478 页。

Jackson, A., and Scheines, R. (2005). “Single Mothers’ Self-Efficacy, Parenting in the Home Environment, and Children’s Development in a Two-Wave Study” in Social Work Research, 29, 1, pp. 7-20.

Jackson, A.,和 Scheines, R. (2005)。“两波研究中单亲母亲的自我效能、家庭环境中的育儿与儿童发展”载于《社会工作研究》,29,1,第 7-20 页。

Eberhardt, F., Glymour, C., & Scheines, R. (2005), On the Number of Experiments Sufficient and in the Worst Case Necessary to Identify All Causal Relations Among N Variables, Proceedings of the 21st Conference on Uncertainty and Artificial Intelligence, Fahiem Bacchus and Tommi Jaakkola (editors), AUAI Press, Corvallis, Oregon, pp. 178-184. 

Eberhardt, F.,Glymour, C.,& Scheines, R. (2005),关于识别 N 个变量之间所有因果关系的充分和最坏情况下必要的实验数量,第 21 届不确定性人工智能会议论文集,Fahiem Bacchus 和 Tommi Jaakkola(编者),AUAI Press,俄勒冈州科瓦利斯,第 178-184 页。

2006 – 2010

Articles文章

Silva, R., Glymour, C., Scheines, R. and Spirtes, P. (2006) “Learning the Structure of Linear Latent Structure Models,” Journal of Machine Learning Research, 7, 191-246.

Silva, R.,Glymour, C.,Scheines, R. 和 Spirtes, P. (2006) “学习线性潜在结构模型的架构”,机器学习研究杂志,7,191-246。

Scheines, R. (2006). The Similarity of Causal Inference in Experimental and Non-Experimental Studies, Proceedings of the 2004 Biennial Meetings, Philosophy of Science, V. 72, N. 5, pp. 927-940.

Scheines, R. (2006). 实验与非实验研究中因果推断的相似性,2004 年双年会论文集,科学哲学,第 72 卷,第 5 期,第 927-940 页。

Eberhardt, F., and Scheines R., (2007).“Interventions and Causal Inference”, in PSA-2006, Proceedings of the 20th biennial meeting of the Philosophy of Science Association 2006

Eberhardt, F.,和 Scheines R.,(2007)。“干预与因果推断”,收录于 PSA-2006,第 20 届科学哲学协会双年会 2006 年会议论文集

Scheines, R. (2008). “Causation, Statistics, and the Law”, Journal of Law and Policy, 16

Scheines, R. (2008). “因果关系、统计学和法律”,《法律与政策杂志》,16

Scheines, R. (2008). “Causation, Truth, and the Law”, Brooklyn Law Review, 73, 2,

Scheines, R. (2008). “因果关系、真理和法律”,布鲁克林法学评论,73,2,

Hoyer, P., Hyvarinen, A., Scheines, R., Spirtes, P., Ramsey, J., Lacerda, G., Shimizu, S. (2008). Causal discovery of linear acyclic models with arbitrary distributions. Proceedings of the 24th Conference on Uncertainty and Artificial Intelligence, 2008, Helsinki, Finland.

Hoyer, P.,Hyvarinen, A.,Scheines, R.,Spirtes, P.,Ramsey, J.,Lacerda, G.,Shimizu, S.(2008)。具有任意分布的线性无环模型的因果发现。第 24 届不确定性人工智能会议论文集,2008 年,赫尔辛基,芬兰。

Spirtes, P., Glymour, C., Scheines, R., Tillman R. (2010). Automated Search for Causal Relations: Theory and Practice. In Heuristics, Probability, and Causality: A Tribute to Judea Pearl, edited by Rina Dechter, Hewctor Geffner, and Joseph Halpern, College Publications, 467-506.

Spirtes, P.,Glymour, C.,Scheines, R.,Tillman R. (2010) 自动搜索因果关系:理论与实践。在《启发式、概率与因果关系:纪念 Judea Pearl》中,由 Rina Dechter,Hewctor Geffner 和 Joseph Halpern 编辑,College Publications,第 467-506 页。

Eberhardt, F., Hoyer, P.O., & Scheines, R. (2010). Combining Experiments to Discover Linear Cyclic Models with Latent Variables. In Journal of Machine Learning, Workshop and Conference Proceedings (AISTATS 2010), 9:185-192. 

Eberhardt, F.,Hoyer, P.O.,& Scheines, R. (2010). 结合实验以发现具有潜在变量的线性循环模型。在《机器学习杂志》,研讨会和会议论文集(AISTATS 2010),第 9 卷:185-192。

Glymour, C., Danks, D., Glymour, B., Eberhardt, F., Ramsey, J., Scheines, R. (2010). “Actual Causation: a stone soup essay.”, Synthese, Volume 175, Issue 2 Page 169-192.

Glymour, C.,Danks, D.,Glymour, B.,Eberhardt, F.,Ramsey, J.,Scheines, R.(2010).”实际因果关系:石头汤论文”,《综合》,第 175 卷,第 2 期,第 169-192 页。

2011 – 2015

Articles文章

Cryder, C., Loewenstein, G., Scheines, R. (2013). The Donor is in the Details, Organizational Behavior and Human Decision Processes, 120 (1), 15-23.

Cryder, C.,Loewenstein, G.,Scheines, R.(2013)。捐赠者在细节中,组织行为与人类决策过程,120(1),15-23。

Reise, S., Scheines, R., Widaman, K., and Haviland, M. (2013). Multidimensionality and Structural Coefficient Bias in Structural Equation Modeling: A Bifactor Perspective, Educational and Psychological Measurement, V. 73, Issue 1

Reise, S.,Scheines, R.,Widaman, K.,和 Haviland, M.(2013)。结构方程模型中的多维性和结构系数偏差:双因素视角,教育心理测量,第 73 卷,第 1 期

Cooper, G., Bahar, I., Becich, M., Benos, P., Berg, J., Espino Glymour, C., Crowley R., Kienholz, M., Lee, A., Scheines, R., Lu, X., The Center for Causal Discovery of Biomedical Knowledge from Big Data, JAMA, (2015)

Cooper, G.,Bahar, I.,Becich, M.,Benos, P.,Berg, J.,Espino Glymour, C.,Crowley R.,Kienholz, M.,Lee, A.,Scheines, R.,Lu, X.,《从大数据中发现生物医学因果知识的中心》,JAMA,(2015)

Bonifay, W., S. Reise, R. Scheines, R. Meijer (2015). “When are multidimensional data unidimensional enough for structural equation modeling? An evaluation of the DETECT multidimensional index,” Structural Equation Modeling. 22 (4), 504-516

Bonifay, W., S. Reise, R. Scheines, R. Meijer (2015). “何时多维数据对于结构方程模型来说足够一维?对 DETECT 多维指数的评估,” 结构方程模型。22 (4), 504-516

2016 – 2020

Articles文章

Yang, R., Spirtes, P., Scheines, R., Reise, S., Mansoff, M. (2017). Finding Pure Submodels for Improved Differentiation of Bifactor and Second-Order Models. Structural Equation Modeling, 24 (3), 402-413.

杨,R.,斯皮里特斯,P.,谢因斯,R.,里斯,S.,曼索夫,M.(2017)。寻找纯子模型以改进二阶模型的区分。结构方程模型,24(3),402-413。

Scheines, R., and Ramsey, J. (2017). Measurement Error and Causal Discovery. Proceedings of the UAI 2016 Workshop on Causation: Foundation to Application, pp. 1-7

Scheines, R.,和 Ramsey, J. (2017). 测量误差与因果发现。UAI 2016 因果性研讨会:基础到应用论文集,第 1-7 页

 

2021-Present2021-至今

Articles文章

Lam, W. Y., Andrews, B., & Ramsey, J. (2022, August). Greedy relaxations of the sparsest permutation algorithm. In Uncertainty in Artificial Intelligence (pp. 1052-1062). PMLR.

Lam, W. Y.,Andrews, B.,& Ramsey, J. (2022 年 8 月). 稀疏排列算法的贪婪松弛。在《人工智能中的不确定性》(第 1052-1062 页)。PMLR。

Andrew, B., Ramsey, J, Sanchez-Romero, R., Camchong, J., and Kummerfeld, E. Fast Scalable and Accurate Discovery of DAGs using the Best Order Score Search and Grow Shrink Trees (2023, October)—Neurips, In Publication.

Andrew, B., Ramsey, J, Sanchez-Romero, R., Camchong, J.,和 Kummerfeld, E. 使用最佳顺序得分搜索和增长收缩树快速可扩展且准确的发现有向无环图(2023 年 10 月)——Neurips,待发表。

research-800×800-min.png

Case Studies and Application Research

案例研究与应用研究

Forthcoming即将到来

资源下载: