本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN),商品物体检测项目介绍,YOLO与SSD,商品检测数据集训练和模型导出与部署。
全套笔记和代码自取移步gitee仓库: https://blog.csdn.net/m0_72919230/article/details/136030441
感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~
共 9 章,60 子模块
TensorFlow介绍
说明TensorFlow的数据流图结构
应用TensorFlow操作图
说明会话在TensorFlow程序中的作用
应用TensorFlow实现张量的创建、形状类型修改操作
应用Variable实现变量op的创建
应用Tensorboard实现图结构以及张量值的显示
应用tf.train.saver实现TensorFlow的模型保存以及加载
应用tf.app.flags实现命令行参数添加和使用
应用TensorFlow实现线性回归
2.4 张量
学习目标
-
目标
-
知道常见的TensorFlow创建张量
-
知道常见的张量数学运算操作
-
说明numpy的数组和张量相同性
-
说明张量的两种形状改变特点
-
应用set_shape和tf.reshape实现张量形状的修改
-
应用tf.matmul实现张量的矩阵运算修改
-
应用tf.cast实现张量的类型
-
应用
-
无
-
内容预览
-
1 类型改变
-
2 形状改变
-
固定值张量
-
随机值张量
-
1 张量的类型
-
2 张量的阶
-
2.4.1 张量(Tensor)
-
2.4.2 创建张量的指令
-
2.4.3 张量的变换
-
2.4.4 张量的数学运算
在编写 TensorFlow 程序时,程序传递和运算的主要目标是tf.Tensor
2.4.1 张量(Tensor)
TensorFlow 的张量就是一个 n 维数组, 类型为tf.Tensor。Tensor具有以下两个重要的属性
-
type:数据类型
-
shape:形状(阶)
2.4.1.1 张量的类型
2.4.1.2 张量的阶
形状有0阶、1阶、2阶….
tensor1 = tf.constant(4.0)
tensor2 = tf.constant([1, 2, 3, 4])
linear_squares = tf.constant([[4], [9], [16], [25]], dtype=tf.int32)
print(tensor1.shape)
# 0维:() 1维:(10, ) 2维:(3, 4) 3维:(3, 4, 5)
2.4.2 创建张量的指令
-
固定值张量
-
随机值张量
-
其它特殊的创建张量的op
-
tf.Variable
-
tf.placeholder
2.4.3 张量的变换
1 类型改变
2 形状改变
TensorFlow的张量具有两种形状变换,动态形状和静态形状
-
tf.reshape
-
tf.set_shape
关于动态形状和静态形状必须符合以下规则
-
静态形状
-
转换静态形状的时候,1-D到1-D,2-D到2-D,不能跨阶数改变形状
-
对于已经固定的张量的静态形状的张量,不能再次设置静态形状
-
动态形状
-
tf.reshape()动态创建新张量时,张量的元素个数必须匹配
def tensor_demo():
“””
张量的介绍
:return:
“””
a = tf.constant(value=30.0, dtype=tf.float32, name=”a”)
b = tf.constant([[1, 2], [3, 4]], dtype=tf.int32, name=”b”)
a2 = tf.constant(value=30.0, dtype=tf.float32, name=”a2″)
c = tf.placeholder(dtype=tf.float32, shape=[2, 3, 4], name=”c”)
sum = tf.add(a, a2, name=”my_add”)
print(a, a2, b, c)
print(sum)
# 获取张量属性
print(“a的图属性:\n”, a.graph)
print(“b的名字:\n”, b.name)
print(“a2的形状:\n”, a2.shape)
print(“c的数据类型:\n”, c.dtype)
print(“sum的op:\n”, sum.op)
# 获取静态形状
print(“b的静态形状:\n”, b.get_shape())
# 定义占位符
a_p = tf.placeholder(dtype=tf.float32, shape=[None, None])
b_p = tf.placeholder(dtype=tf.float32, shape=[None, 10])
c_p = tf.placeholder(dtype=tf.float32, shape=[3, 2])
# 获取静态形状
print(“a_p的静态形状为:\n”, a_p.get_shape())
print(“b_p的静态形状为:\n”, b_p.get_shape())
print(“c_p的静态形状为:\n”, c_p.get_shape())
# 形状更新
# a_p.set_shape([2, 3])
# 静态形状已经固定部分就不能修改了
# b_p.set_shape([10, 3])
# c_p.set_shape([2, 3])
# 静态形状已经固定的部分包括它的阶数,如果阶数固定了,就不能跨阶更新形状
# 如果想要跨阶改变形状,就要用动态形状
# a_p.set_shape([1, 2, 3])
# 获取静态形状
print(“a_p的静态形状为:\n”, a_p.get_shape())
print(“b_p的静态形状为:\n”, b_p.get_shape())
print(“c_p的静态形状为:\n”, c_p.get_shape())
# 动态形状
# c_p_r = tf.reshape(c_p, [1, 2, 3])
c_p_r = tf.reshape(c_p, [2, 3])
# 动态形状,改变的时候,不能改变元素的总个数
# c_p_r2 = tf.reshape(c_p, [3, 1])
print(“动态形状的结果:\n”, c_p_r)
# print(“动态形状的结果2:\n”, c_p_r2)
return None
2.4.4 张量的数学运算
-
算术运算符
-
基本数学函数
-
矩阵运算
-
reduce操作
-
序列索引操作
这些API使用,我们在使用的时候介绍,具体参考文档
2.5 变量OP
-
目标
-
说明变量op的特殊作用
-
说明变量op的trainable参数的作用
-
应用global_variables_initializer实现变量op的初始化
-
应用
-
无
-
内容预览
-
2.5.1 创建变量
-
2.5.2 使用tf.variable_scope()修改变量的命名空间
TensorFlow变量是表示程序处理的共享持久状态的最佳方法。变量通过 tf.Variable OP类进行操作。变量的特点:
-
存储持久化
-
可修改值
-
可指定被训练
2.5.1 创建变量
-
tf.Variable(initial_value=None,trainable=True,collections=None,name=None)
-
initial_value:初始化的值
-
trainable:是否被训练
-
collections:新变量将添加到列出的图的集合中collections,默认为[GraphKeys.GLOBAL_VARIABLES],如果trainable是True变量也被添加到图形集合 GraphKeys.TRAINABLE_VARIABLES
-
变量需要显式初始化,才能运行值
def variable_demo():
“””
变量的演示
:return:
“””
# 定义变量
a = tf.Variable(initial_value=30)
b = tf.Variable(initial_value=40)
sum = tf.add(a, b)
# 初始化变量
init = tf.global_variables_initializer()
# 开启会话
with tf.Session() as sess:
# 变量初始化
sess.run(init)
print(“sum:\n”, sess.run(sum))
return None
2.5.2 使用tf.variable_scope()修改变量的命名空间
会在OP的名字前面增加命名空间的指定名字
with tf.variable_scope(“name”):
var = tf.Variable(name=’var’, initial_value=[4], dtype=tf.float32)
var_double = tf.Variable(name=’var’, initial_value=[4], dtype=tf.float32)
<tf.Variable ‘name/var:0’ shape=() dtype=float32_ref>
<tf.Variable ‘name/var_1:0’ shape=() dtype=float32_ref>
请期待下一期