促进多巴胺分泌的参考文献

[1]  安德斯·汉森.《大脑健身房》

https://union-click.jd.com/jdc?e=&p=JF8BANEJK1olXgcHUl9UDUsXB18IGloXXgELUVpVAEgQAl9MRANLAjZbERscSkAJHTdNTwcKBlMdBgABFksWAm0LHFIQWQ4KV1lcFxJSXzI4UgxTOVxbVV84SUxUdjtabDkQCG9QJFJROEonA24JGFwRXAYEU25tCEwnQgEIGlodWgQEUm5cOEsQBmsBGVIdVA4BVFltD0seMzJYWgNIDUdaZG5tC3snM284GGtXM1UHXVZcAUoWVG5dHl4UCgRRVFxYARtDUT8IGQlFWgICZFxcCU8eMw

[2] Arias-Carrión, O., & Pŏppel, E. (2007). Dopamine, learning, and reward-seeking behavior. Acta neurobiologiae experimentalis, 67(4), 481–488.

[3] Hollerman, J. R., Tremblay, L., & Schultz, W. (2000). Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior. Progress in brain research, 126, 193–215. 

[4] Frank M. J. (2005). Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of cognitive neuroscience, 17(1), 51–72. 

[5] Sharma, A., & Couture, J. (2014). A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). The Annals of pharmacotherapy, 48(2), 209–225. https://doi.org/10.1177/1060028013510699

[6] Volkow, N. D., Wise, R. A., & Baler, R. (2017). The dopamine motive system: implications for drug and food addiction. Nature reviews. Neuroscience, 18(12), 741–752. https://doi.org/10.1038/nrn.2017.130

[7] Bressan, R. A., & Crippa, J. A. (2005). The role of dopamine in reward and pleasure behaviour–review of data from preclinical research. Acta psychiatrica Scandinavica. Supplementum, (427), 14–21. https://doi.org/10.1111/j.1600-0447.2005.00540.x

[8] Chong, T. T., & Husain, M. (2016). The role of dopamine in the pathophysiology and treatment of apathy. Progress in brain research, 229, 389–426. https://doi.org/10.1016/bs.pbr.2016.05.007

[9] Fernstrom, J. D., & Fernstrom, M. H. (2007). Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. The Journal of nutrition, 137(6 Suppl 1), 1539S–1548S. https://doi.org/10.1093/jn/137.6.1539S

[10] Colzato, L. S., de Haan, A. M., & Hommel, B. (2015). Food for creativity: tyrosine promotes deep thinking. Psychological research, 79(5), 709–714. https://doi.org/10.1007/s00426-014-0610-4

[11] Kühn, S., Düzel, S., Colzato, L., Norman, K., Gallinat, J., Brandmaier, A. M., Lindenberger, U., & Widaman, K. F. (2019). Food for thought: association Between dietary tyrosine and cognitive performance in younger and older adults. Psychological research, 83(6), 1097–1106. https://doi.org/10.1007/s00426-017-0957-4

[12] Montgomery, A. J., McTavish, S. F., Cowen, P. J., & Grasby, P. M. (2003). Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C]raclopride PET study. The American journal of psychiatry, 160(10), 1887–1889. https://doi.org/10.1176/appi.ajp.160.10.1887

[13] Lerner, A., Neidhöfer, S., & Matthias, T. (2017). The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists. Microorganisms, 5(4), 66. https://doi.org/10.3390/microorganisms5040066

[14] Ochoa-Repáraz, J., & Kasper, L. H. (2016). The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders?. Current obesity reports, 5(1), 51–64. https://doi.org/10.1007/s13679-016-0191-1

[15] Rao, M., & Gershon, M. D. (2016). The bowel and beyond: the enteric nervous system in neurological disorders. Nature reviews. Gastroenterology & hepatology, 13(9), 517–528. https://doi.org/10.1038/nrgastro.2016.107

[16] Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature reviews. Neuroscience, 13(10), 701–712. https://doi.org/10.1038/nrn3346

[17] Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature reviews. Neuroscience, 13(10), 701–712. https://doi.org/10.1038/nrn3346

[18] MacQueen, G., Surette, M., & Moayyedi, P. (2017). The gut microbiota and psychiatric illness. Journal of psychiatry & neuroscience : JPN, 42(2), 75–77. https://doi.org/10.1503/jpn.170028

[19] McKean, J., Naug, H., Nikbakht, E., Amiet, B., & Colson, N. (2017). Probiotics and Subclinical Psychological Symptoms in Healthy Participants: A Systematic Review and Meta-Analysis. Journal of alternative and complementary medicine (New York, N.Y.), 23(4), 249–258. https://doi.org/10.1089/acm.2016.0023

[20] Koelsch S. (2014). Brain correlates of music-evoked emotions. Nature reviews. Neuroscience, 15(3), 170–180. https://doi.org/10.1038/nrn3666

[21] Bernatzky, G., Bernatzky, P., Hesse, H. P., Staffen, W., & Ladurner, G. (2004). Stimulating music increases motor coordination in patients afflicted with Morbus Parkinson. Neuroscience letters, 361(1-3), 4–8. https://doi.org/10.1016/j.neulet.2003.12.022

[22] Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11818–11823. https://doi.org/10.1073/pnas.191355898

[23] Sohn, C. H., & Lam, R. W. (2005). Update on the biology of seasonal affective disorder. CNS spectrums, 10(8), 635–14. https://doi.org/10.1017/s109285290001960x

[24] Neumeister, A., Konstantinidis, A., Praschak-Rieder, N., Willeit, M., Hilger, E., Stastny, J., & Kasper, S. (2001). Monoaminergic function in the pathogenesis of seasonal affective disorder. The international journal of neuropsychopharmacology, 4(4), 409–420. https://doi.org/10.1017/S1461145701002644

[25] Tsai, H. Y., Chen, K. C., Yang, Y. K., Chen, P. S., Yeh, T. L., Chiu, N. T., & Lee, I. H. (2011). Sunshine-exposure variation of human striatal dopamine D(2)/D(3) receptor availability in healthy volunteers. Progress in neuro-psychopharmacology & biological psychiatry, 35(1), 107–110. https://doi.org/10.1016/j.pnpbp.2010.09.014

[26] Cell Press. (2006, August 27). Pure Novelty Spurs The Brain. ScienceDaily. Retrieved February 25, 2022 from www.sciencedaily.com/releases/2006/08/060826180547.htm 

资源下载: